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FIGURE 12.44 Every point of the
cylinder in Example 1 has coordinates of
the form (xo, x¢°, z) . We call it “the

”

cylinder y = x~.

12.6 Cylinders and Quadric Surfaces 715

As Example 1 suggests, any curve f(x,y) = c in the xy-plane defines a cylinder par-
allel to the z-axis whose equation is also f(x,y) = c¢. For instance, the equation
x? + y? = 1 defines the circular cylinder made by the lines parallel to the z-axis that pass
through the circle x> + y% = 1 in the xy-plane.

In a similar way, any curve g(x,z) = c in the xz-plane defines a cylinder parallel to
the y-axis whose space equation is also g(x,z) = ¢. Any curve A(y,z) = ¢ defines a
cylinder parallel to the x-axis whose space equation is also A(y,z) = c¢. The axis of a
cylinder need not be parallel to a coordinate axis, however.

Quadric Surfaces

A quadric surface is the graph in space of a second-degree equation in x, y, and z. We
focus on the special equation

Ax* + By? + Cz? + Dz = E,

where 4, B, C, D, and E are constants. The basic quadric surfaces are ellipsoids, parabol-
oids, elliptical cones, and hyperboloids. Spheres are special cases of ellipsoids. We
present a few examples illustrating how to sketch a quadric surface, and then give a sum-
mary table of graphs of the basic types.

EXAMPLE 2  The ellipsoid

LS
LS}

2
£+

+
Cl2

N
QN‘N

(Figure 12.45) cuts the coordinate axes at (£ a, 0, 0), (0, £ b, 0), and (0, 0, &+ ¢). It lies
within the rectangular box defined by the inequalities |x| < a, |y| = b, and |z| = c.
The surface is symmetric with respect to each of the coordinate planes because each vari-
able in the defining equation is squared.

z
Elliptical cross-section

in the plane z = z, Ve

53]
[%)
&
5
The ellipse l% 5
2 2 . y 22
LI Theelhpsep-i—:z:

u2 02

in the xz-plane

in the yz-plane

FIGURE 12.45 The ellipsoid

S}

2
Y z°
Tt

in Example 2 has elliptical cross-sections in each of the three coordinate planes.

x°
a2

The curves in which the three coordinate planes cut the surface are ellipses. For example,

2 2
%4—)%:1 when z=0.
a b
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The parabola z = ﬁ y2 in the yz-plane

The parabola z = —

in the xz-plane

The curve cut from the surface by the plane z = zy, |zy| < ¢, is the ellipse

x> y2
+ =
a*(1 = (zo/c)*)  bH(1 — (zo/c)?)

If any two of the semiaxes a, b, and ¢ are equal, the surface is an ellipsoid of revolu-

tion. If all three are equal, the surface is a sphere. ]
EXAMPLE 3  The hyperbolic paraboloid
2 2
Y X z
2 70

has symmetry with respect to the planes x = 0 and y = 0 (Figure 12.46). The cross-
sections in these planes are

x = 0: the parabolaz = ﬁyz. (1)
y = 0: the parabolaz = —ixz. (2)

In the plane x = 0, the parabola opens upward from the origin. The parabola in the plane
y = 0 opens downward.
If we cut the surface by a plane z = zy > 0, the cross-section is a hyperbola,

2 2 Z0

I
QN‘R
9

with its focal axis parallel to the y-axis and its vertices on the parabola in Equation (1). If
z 1s negative, the focal axis is parallel to the x-axis and the vertices lie on the parabola in
Equation (2).

y2 x?
Part of the hyperbola e -==1
a
in the plane z = ¢

/

\\\> y

2 2
Part of the hyperbola % - % =1

<" in the plane z = —¢

FIGURE 12.46 The hyperbolic paraboloid (y%/b?) — (x*/a?) = z/c, ¢ > 0. The cross-sections in planes perpendicular to the
z-axis above and below the xy-plane are hyperbolas. The cross-sections in planes perpendicular to the other axes are parabolas.

Near the origin, the surface is shaped like a saddle or mountain pass. To a person trav-
eling along the surface in the yz-plane the origin looks like a minimum. To a person travel-
ing the xz-plane the origin looks like a maximum. Such a point is called a saddle point of
a surface. We will say more about saddle points in Section 14.7. [

Table 12.1 shows graphs of the six basic types of quadric surfaces. Each surface
shown is symmetric with respect to the z-axis, but other coordinate axes can serve as well
(with appropriate changes to the equation).



TABLE 12.1  Graphs of Quadric Surfaces
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