

FIGURE 12.44 Every point of the cylinder in Example 1 has coordinates of the form $\left(x_{0}, x_{0}{ }^{2}, z\right)$. We call it "the cylinder $y=x^{2}$."

As Example 1 suggests, any curve $f(x, y)=c$ in the $x y$-plane defines a cylinder parallel to the z-axis whose equation is also $f(x, y)=c$. For instance, the equation $x^{2}+y^{2}=1$ defines the circular cylinder made by the lines parallel to the z-axis that pass through the circle $x^{2}+y^{2}=1$ in the $x y$-plane.

In a similar way, any curve $g(x, z)=c$ in the $x z$-plane defines a cylinder parallel to the y-axis whose space equation is also $g(x, z)=c$. Any curve $h(y, z)=c$ defines a cylinder parallel to the x-axis whose space equation is also $h(y, z)=c$. The axis of a cylinder need not be parallel to a coordinate axis, however.

Quadric Surfaces

A quadric surface is the graph in space of a second-degree equation in x, y, and z. We focus on the special equation

$$
A x^{2}+B y^{2}+C z^{2}+D z=E
$$

where A, B, C, D, and E are constants. The basic quadric surfaces are ellipsoids, paraboloids, elliptical cones, and hyperboloids. Spheres are special cases of ellipsoids. We present a few examples illustrating how to sketch a quadric surface, and then give a summary table of graphs of the basic types.

EXAMPLE 2 The ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

(Figure 12.45) cuts the coordinate axes at $(\pm a, 0,0),(0, \pm b, 0)$, and $(0,0, \pm c)$. It lies within the rectangular box defined by the inequalities $|x| \leq a,|y| \leq b$, and $|z| \leq c$. The surface is symmetric with respect to each of the coordinate planes because each variable in the defining equation is squared.

FIGURE 12.45 The ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

in Example 2 has elliptical cross-sections in each of the three coordinate planes.
The curves in which the three coordinate planes cut the surface are ellipses. For example,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad \text { when } \quad z=0
$$

The curve cut from the surface by the plane $z=z_{0},\left|z_{0}\right|<c$, is the ellipse

$$
\frac{x^{2}}{a^{2}\left(1-\left(z_{0} / c\right)^{2}\right)}+\frac{y^{2}}{b^{2}\left(1-\left(z_{0} / c\right)^{2}\right)}=1
$$

If any two of the semiaxes a, b, and c are equal, the surface is an ellipsoid of revolution. If all three are equal, the surface is a sphere.

EXAMPLE 3 The hyperbolic paraboloid

$$
\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=\frac{z}{c}, \quad c>0
$$

has symmetry with respect to the planes $x=0$ and $y=0$ (Figure 12.46). The crosssections in these planes are

$$
\begin{align*}
& x=0: \quad \text { the parabola } z=\frac{c}{b^{2}} y^{2} \tag{1}\\
& y=0: \quad \text { the parabola } z=-\frac{c}{a^{2}} x^{2} . \tag{2}
\end{align*}
$$

In the plane $x=0$, the parabola opens upward from the origin. The parabola in the plane $y=0$ opens downward.

If we cut the surface by a plane $z=z_{0}>0$, the cross-section is a hyperbola,

$$
\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=\frac{z_{0}}{c}
$$

with its focal axis parallel to the y-axis and its vertices on the parabola in Equation (1). If z_{0} is negative, the focal axis is parallel to the x-axis and the vertices lie on the parabola in Equation (2).

The parabola $z=\frac{c}{b^{2}} y^{2}$ in the $y z$-plane $z z$

FIGURE 12.46 The hyperbolic paraboloid $\left(y^{2} / b^{2}\right)-\left(x^{2} / a^{2}\right)=z / c, c>0$. The cross-sections in planes perpendicular to the z-axis above and below the $x y$-plane are hyperbolas. The cross-sections in planes perpendicular to the other axes are parabolas.

Near the origin, the surface is shaped like a saddle or mountain pass. To a person traveling along the surface in the $y z$-plane the origin looks like a minimum. To a person traveling the $x z$-plane the origin looks like a maximum. Such a point is called a saddle point of a surface. We will say more about saddle points in Section 14.7.

Table 12.1 shows graphs of the six basic types of quadric surfaces. Each surface shown is symmetric with respect to the z-axis, but other coordinate axes can serve as well (with appropriate changes to the equation).

ELLIPSOID

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

ELLIPTICAL PARABOLOID $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z}{c}$

ELLIPTICAL CONE $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}$

Part of the hype
in the $y z$-plane

HYPERBOLOID OF ONE SHEET

$$
\frac{z^{2}}{c^{2}}-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

HYPERBOLIC PARABOLOID $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=\frac{z}{c}, \quad c>0$

